NASA TTF-10,7 86

NASA TT F-10,786

- *

ON THE PROBLEM OF ELASTIC EQUILIBRIUM OF AN ELLIPSOID OF REVOLUTION

Orazio Tedone

Translation of "Sul problema dell'equilibrio elastico di un ellissoide di
rotazione".
Atti della Reale Accademia dei Lincei. Classe di scienze fisiche,
matematiche e naturali, Rendiconti, Ser. 5, Vol. 14, pp. 76-84, 1905.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON D.C. MARCH 1967

Ne7-250 L3

(ACCESSION ;uma:m (TH7
(PAGES) 22’—
]

(NASA CR OR TMX OR AD NUMBER) {CATEGORY)

FACILITY FORM €02




NASA TTF-10,786

ON THE PROBLEM OF ELASTIC EQUILIBRIUM OF AN ELLIPSOID OF REVOLUTION

Orazio Tedone*

The subject problem is analyzed for the case where
the surface displacements are given using the theory of

Green's functions., The case where the surface stresses
are specified is briefly discussed.

1. Case in which the displacements on the surface are given. Introduc-  [76%%
tory formulas. Let us remember that, in accord with the principles which we
have applied several times, when surface displacements in an elastic isotropic
deformed body in equilibrium are known the displacements u, v, w in an internal
point in the body itself are given by the formulas:
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it is assumed that the value of the harmonic function 6 is known which is
inherent in the problem. As is known, it represents the elementary expansion;
here o 15 the surface of the elastic body; n, the internal normal; G, the
ordinary Green function; A and p are the usual Lamé constants; and E, Ny, ¢

are the values of x, y, z on o. In solving the problem, which we shall try to
do rapidly, we will make no use of the effective value of the Green function,
but we will only use this to give a convenient representation to a harmonic
function which takes on given values on the surface. If equations (1) are
constructed in any manner on the assumption that # is known, for the complete
solution of the problem, we must determine 6 from equation
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Arriving at our special case, we formulate the equation of the ellipsoid
in the form
yEs --—h2

AT 3

where r and h are assumed to be real if the ellipsoid is elongated with lr] > 1.
If the ellipsoid is compressed, r and h are assumed to be purely imaginary. ~[77
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**Numbers in the margin indicate pagination in the original foreign text.




When in any case the following are then written:

z=hot , y=h (@ — D) (1 — F)cosy , s=hy/{g"— 1) (1 — ") soilyp (4)

P, t, ¥ will be a system of orthogonal curvilinear coordlnates.(l) In the case
of an elongated ellipsoid, we will-—-in addition to assumlng h to be real--also
hypothesize thatp is real with |p| > 1 and that |t| S 1. In the case of a
compressed ellipsoid, in addition to assuming that h is real, we will hypothe-
size likewise that p 1is purely imaginary and that TEIS 1. With these conven~
tions, in the coordinate system p, t, ¥, equation (3) of the ellipsoid will
always be p= r.

If we then set the values of any one function ¢of the points of surface (3)
satisfying the known general conditions--which we will not pause to present

here--in the form 0. o .
Z,‘ Z"‘ (A,,.,; €08 #4f -} By s ) P (2) (5)
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and the values of P (t) are the ordinary Legendre functions, then, as is known,
the follow1ng will be true:
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The function ¢, which is harmonic and regular inside the ellipsoid which ac-
quires the values of ¢, will be given by the formula
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In both the cases in question—-i.e., the case of the elongated ellipsoid and the
case of the compressed ellipsoid--we conventionally write the following:

Vi—e’=’V—_1Ve'—1 T R= =1 —1.

It follows from this that in both these cases Pm i(p) and Pm i(r) are well

? b

determined functions such that their quotient is real. Moreover, Pm i(r)
b

differs from zero for any value of m and of i.

To formulate the solution to our problem in the easiest way, let us note /78
the following forms which we will use almost exclusively and which are, at
least in part, well-known: _
* Translator's note: Sen is properly sin in English termlnology.

S If we decide to give only positive values to p if it is real, or positive
values to the coefficient of the imaginary part if it is 1maginaryavwhile t may
take on positive and negative values and ¢ varies between zero and 27=~a single
point in space will correspond to any system of values of p,t,y, and vice

versa,
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where [:—'—2 - ] indicates the largest whole number contained in o ) =,

By means of these formulas, we may calculate the partial derivatives of
function ¢ with respect to x, y, z. We have in fact:
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where the primes on the summations with respect to i indicate that when i = 0
the factor 1/2 is lacking. By means of the last equation in expression (8'),
these expressions for the derivatives may be reduced to the form (7) of &.
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Solution of the problem.
may write

Because of the statements given above, we
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where a, b; a', b'; a'", b"

are to be considered

known constants. Let us

also

assume that the harmonic function 6 is given by the same expression (7) of ¢ in
such a way that the assumed values taken on by 6 on ¢ are given by expression

1.

set the values

0= hrto , 0= hy/r —1Y1—00 , (o=hy/r—11/1—F0

assumed on ¢ in the form (5), and thus we obtain:

(5), and let us attempt to calculate the other terms which appear in expression
By means of equations (6) and the formulas (8) and (8'), it is easy to
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so that we may write
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The problem is now reduced to determining the constants A, B by means of /81
the known constants a, b; a', b'; a", b", so that equatjon (2) is identically
satisfied. When this equation is now multiplied by 02~t2 and it is seen that
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it is immediately found that whenever equatlon (2) is 1nvolved we may write:
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and the prime on the summation with respect to i indicates that, for the first /82
two values of i: (R ), the values of § depart somewhat from
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the general law.

If we now proceed to divide by p?- t2 and take into account the last
equation in expression (8'), then formula (13) will easily assume the form
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To determine the values of A corresponding to a given value of subscript i,
we hence have the equations
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and we have similar equations to find the values of B corresponding to that
value of subscript i. We thus arrive at the theory of infinite determinants.
We may, however, avoid using this theory by noting that—-if the coefficients of
cos iy and sin iy in expression (13) are zero--the terms of expression (15) are
identically satisfied. Since we know that the problem has but a single solu-

tion, we may conclude that our unknowns 1nclude those which satisfy the follo-
wing equations:
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From similar formulas we may determine the wvalues of B At an early oppor-

- 3
tunity, we propose to examine the validity of this solution in greater detail.

3. Regarding the case in which the surface stresses are given. The new
problem, if we wish to handle it directly with the principles which I have
employed in other cases, will present difficulties having no easy solution.

The simplest method to solve it is, in my opinion, to formulate the expressions:
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where the values of u, v, w are those found in the preceding problem and to
transform these expressions suitably so that their surface values are developed

into a series of spherical functions. This may be done by utilizing expressions
(8) and (8'). Seeing that the values thus obtained are also the values of

zt | -t z | 4 s (20)
L R EE R N+ EE

where L, M, N are the given surface stresses, we then have the task of expanding

expressions (20) into a series of spherical functions and of determining the /84
constants a, b; a',b'; a", b" which appear in the expressions of u, v, w, so that
on the surface of the ellipsoid expressions (19) become equal to the correspon-
ding expressions (20).

4. Remarks. These procedures, which as a particular case contain a new
method for solving elastic equilibrium problems for the sphere and for two
concentric spheres, may obviously be extended to solve the problem of elastic
equilibrium for a body limited by two confocal ellipsoids of rotation.
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